

COST-BENEFIT ANALYSIS OF URBAN NATURE-BASED SOLUTIONS: A SYSTEMATIC REVIEW OF APPROACHES, SCALES AND OUTCOMES

Authors:

Chelli Alessia, University of Trento

Prof. Geneletti Davide, University of Trento

Dr. Brander Luke, Vrije Universiteit Amsterdam

 Measure of the human welfare derived from the use or appreciation of NBS

 Quantify and communicate the benefits and costs of NBS to decision makers

Comparing different investment alternatives

ECONOMIC FRAMEWORKS TO SUPPORT DECISION-MAKING

- There exist a variety of frameworks for generating and structuring economic information to support decision-making on NBS
- The choice of which method use depends on the nature of the decision problem and the availability of information

Cost-Benefit Analysis

Multi-Criteria Analysis

- Most commonly used economic assessment method for evaluating and comparing investments, projects and policies
- It provides an indication of how much a project or investment contributes to social welfare by calculating the extent to which the benefits of the project exceed costs

COST-BENEFIT ANALYSIS MAIN ISSUES

Discount rate Temporal horizon

Impact the CBA outcome

CBA ISSUES IN THE CONTEXT OF NBS

Difficulties in including the full range of benefits

Different distribution of the benefits across space and time Lack of a readily observable monetary value

Their value might change according to

scales at which the assessment has been conducted

OVERVIEW OF CBA STUDIES ON URBAN NBS

GENERAL INFORMATION

- Type of NBS analysed
- Purpose of the assessment
- Spatial scale of NBS implementation

CBA ELEMENTS ANALYSIS

- Discount rate and temporal horizon
- Costs and benefits included
- Outcomes

BENEFIT ANALYSIS

- Monetary valuation approaches adopted
- Relation between spatial scale of NBS implementation and distribution of the benefits
- Temporal distribution of the benefits

• Review of 48 scientific publication between 2000 and 2022

NBS TYPES

PURPOSE OF THE ASSESSMENT

Distribution of the purpose of CBA assessment among NBS categories

SPATIAL SCALE OF IMPLEMENTATION

Distribution of the spatial scale of implementation for each NBS category

TEMPORAL HORIZON AND DISCOUNT RATE

Discount rate distribution among NBS cateogories

■ Bioretention areas ■ Building solutions ■ Constructed wetland ■ Open green space ■ Urban farming ■ Urban forest

COSTS AND BENEFITS INCLUDED

Building solutions

Benefits included by the majority of the studies:

- Air quality regulation
- Regulation of water flows
- Aesthetic appreciation
- Increase infrastructure longevity
- Thermal insulation
- Noise reduction

Other benefit included:

- Local climate regulation
- Carbon sequestration and storage
- Moderation of extreme events
- Job creation

Costs included by the majority of the studies:

- Installation costs
- Operation and maintenance costs
- Environmental costs
- Removal costs

Bioretention areas

Benefits included by the majority of the studies:

- Moderation of extreme events
- Regulation of water flows
- Wastewater treatment

Other benefit included:

- Aesthetic appreciation
- Local climate regulation

Costs included by the majority of the studies:

- Installation costs
- Operation and maintenance costs

COSTS AND BENEFITS INCLUDED

Open green spaces

Benefits included by the majority of the studies:

- Regulation of water flows
- Opportunity for recreation

Other benefit included:

- Aesthetic appreciation
- Mental and physical health
- Air quality regulation

Costs included by the majority of the studies:

- Installation costs
- Operation and maintenance costs
- Opportunity costs

Urban forest

Benefits included by the majority of the studies:

- Air quality regulation
- Carbon sequestration and storage
- Regulation of water flows

Other benefit included:

- Mental and physical health
- Increase property value

Costs included by the majority of the studies:

- Installation costs
- Maintenance and operation costs
- Opportunity costs

COSTS AND BENEFITS INCLUDED

Community garden

Benefits included by the majority of the studies:

- Provision of food
- Air quality regulation

Other benefit included:

- Carbon sequestration and storage
- Regulation of water flow
- Aesthetic appreciation

Costs included by the majority of the studies:

- Installation costs
- Maintenance and operation costs

Constructed wetland

Benefits included by the majority of the studies:

- Provision of water
- Moderation of extreme events

Other benefit included:

- Carbon sequestration and storage
- Wastewater treatment

Costs included by the majority of the studies:

- Installation costs
- Maintenance and operation costs

CBA OUTCOMES

NBS types	negative	positive	mixed
Extensive green roof (n=16)	13%	69%	19%
Intensive green roof (n=7)	14%	71%	14%
Green roof (n=11)	36%	64%	0%
Green wall system (n=15)	13%	87%	0%
Green facade (n=15)	7%	87%	7%
Retention pond (n=4)	0%	50%	50%
Infiltration basin (n=3)	0%	100%	0%
Vegetated grid pave (n=6)	17%	67%	17%
Swale (n=4)	0%	0%	100%
Rain garden (n=6)	33%	50%	17%
Low vegetation (n=1)	0%	100%	0%
Street trees (n=6)	0%	83%	17%
Constructed wetland (n=3)	0%	100%	0%
Urban forest (n=2)	0%	100%	0%
Urban park (n=1)	100%	0%	0%
Use of pre-existing vegetation (n=1)	0%	100%	0%
Community garden (n=4)	0%	100%	0%

Different monetary approaches has been used to estimate the value of the NBS benefits

- Regulating ES Cost approaches (avoided damage cost, replacement cost)
- Habitat ES \implies Value transfer
- Cultural ES Behavioural linkages (stated and revealed preferences)

Value transfer has been widely used to estimate the value of all the categories of benefits, in particular cultural and habitat ES

BENEFITS TEMPORAL AND SPATIAL DISTRIBUTION

Temporal scale

The majority of the paper did not take into account the different temporal distribution of the benefits. In most cases the benefits have been considered every year throughout the entire duration of the analysis. Few exceptions:

- Provision of food
- Carbon sequestration and storage

Spatial scale

Benefit spatial distribution of NBS implemented at the site level

The majority of the analysis considered economic benefits that were distributed across a wider spatial scale than the scale of implementation

EXAMPLE – GREEN ROOF

BENEFIT	MONETARY VALUATION APPROACH	EXAMPLE	
Air quality regulation	Avoided damage cost	Avoided costs in terms of health (reduction in hospitalization)	
Regulation of water flows	Replacement cost	Reduction in water management costs	
Aesthetic appreciation	Behavioural linkages	Estimate the WTP for aesthetic improvement	
Increase roof longevity	Avoided cost	Avoided cost of replacing the roof	
Thermal insulation	Avoided cost	Avoided cost of energy	

BENEFIT	MONETARY VALUATION APPROACH	EXAMPLE	
Wastewater treatment	Replacement cost	Reduction in water management costs	
Regulation of water flows	Replacement cost	Reduction in water management costs	
Moderation of extreme events	Avoided damage cost	Reduction in costs associated with flood damages	
Aesthetic appreciation	Behavioural linkages/Value transfer	Estimate the WTP for aesthetic improvement	

- Variations in the benefits considered in the CBA for the same type of NBS
- Variability in the distribution of time horizons and adopted discount rates
- Overall, CBA of NBS have demonstrated economic efficiency
- NBS offer economic advantages on a larger scale compared to their scale of implementation
- Need to consider the different temporal distribution of the benefits

THANK YOU FOR YOUR ATTENTION